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Abstract

Historically, chess engines have used highly complex functions to evaluate chess
positions. Recently, efficiently updatable neural networks (NNUE) have displaced
these functions without the need of human knowledge. The input of these networks
are called feature sets, and they take advantage of the order in which positions are
evaluated in a depth-first search to save computation.

In this thesis, I develop a classical chess engine where the evaluation function is
replaced by a NNUE network trained with a pipeline created from scratch. The
main goal of this thesis is to test novel feature sets that can improve existing ones.
Additionally, an alternative way of training the networks is tried using a method
proposed years ago but with a higher volume and quality of data available in the
post-NNUE era.

Abstract (Spanish)

Históricamente, los motores de ajedrez han utilizado funciones altamente complejas
para evaluar posiciones de ajedrez. Recientemente, las redes neuronales eficien-
temente actualizables (NNUE) han desplazado a estas funciones sin necesidad de
utilizar conocimiento humano. El input de estas redes se denomina feature sets y se
aprovechan del orden en que se evalúan las posiciones en una búsqueda depth-first
para ahorrar cómputo.

En esta tesis desarrollo un motor de ajedrez clásico, en donde la función de evaluación
es reemplazada por una red NNUE entrenada con un pipeline creado de cero. Esta
tesis busca probar novedosos feature sets que puedan mejorar los que ya existen.
Adicionalmente, se prueba una manera alternativa de entrenar las redes utilizando
un método propuesto hace años pero con un volumen y calidad de datos superiores
disponibles en la era post-NNUE.
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1 Introduction

Chess is a game that has been around for centuries and has been the subject of study
in many disciplines. When the first computers started to be developed in the fifties, the
interest for computer chess started to grow. Basic chess algorithms were developed, but
hardware lacked the power to play a full game. The drastic advancements in software and
hardware that followed allowed for the development of what we know today as a chess
engine: a computer program that analyzes a chess board and provides the strongest move
it can find.

Computer chess offers a controlled, yet complex environment to serve as a benchmark
to study artificial intelligence, as it requires strategic planning and decision-making under
uncertainty, key aspects of AI research.

IBM DeepBlue [4] was the first chess machine to reach superhuman level by consistently
beating the world champion, Garry Kasparov, in 1997 [5]. Since then, chess engines have
evolved in strength and complexity.

A chess position is defined by the state of the game: the position of the pieces on
the board, who is to move, castling rights, en passant, 50-move rule, etc. The game of
chess can be modeled as a tree, where each node is a particular position and the edges are
legal moves for that position. With this representation, chess engines can use tree search
algorithms to explore the tree and approximate the best move. Since the 1970s and to this
date, chess engines have used algorithms like Minimax [7] and Monte Carlo Tree Search
[3] (MCTS) or some of its variants [8, 21] to accomplish this.

The number of possible positions in chess is vast, estimated by Shannon [12] to be
around 1043. This number is based on the average number of legal moves per position and
the average game length. This makes it not feasible to explore the entire tree, so every tree
search algorithm relies on having an evaluation function: a function that takes a position
and returns a single real number. This number is used to encompass information about
the whole subtree of that position so it can be propagated up the tree, depending on the
algorithm. Until a few years ago, highly complex handcrafted functions were used that
were based on human knowledge about the game.

Until the 2010s, the development of chess engines advanced at a slow but consistent
pace. Until 2017 that Google DeepMind published AlphaGo Zero [15] and its successor
AlphaZero [14, 13] in 2018, which proved to be overwhelmingly superior (28 wins, 73 draws,
and 0 losses against the best chess engine at that time). They introduced a new approach
to the development of board game engines, including chess: train a convolutional neural
network with a reinforcement learning algorithm to learn to play by itself.

This change of paradigm, where the evaluation of positions is done by neural networks
instead of functions built with human knowledge, altered the course of development of all
modern engines (not just Go and chess). In 2018, Yu Nasu introduced the networks EUNN
(or NNUE) “Efficiently Updatable Neural-Networks” [10] for the game Shogi. NNUE net-
works allow for cheap evaluations when evaluating a sequence of similar positions, making
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them ideal for use in depth-first search-based engines. Since then, all modern chess engines
have incorporated NNUE networks or some kind of neural network in their evaluation.

The chess engine Stockfish [17], modern successor of DeepBlue with improved heuristics
and running in commercial hardware, is one of the strongest in the world. It incorporated
NNUE networks mixed with classical evaluation in version 121. Since Stockfish 16.12 (2024)
the evaluation is done exclusively through NNUE networks, eliminating all human aspects.

The input to an NNUE network is a one-dimensional vector of one-hot features. Each
feature represents a well defined aspect of the position, like the position of pieces. A col-
lection of features is called a feature set, and can be defined formally. The term encoding
is used to refer to feature sets as well, as they encode the board state into a vector.

The main goal of this thesis is to propose and evaluate multiple feature sets in an
attempt to improve well-known ones. Additionally, an alternative approach to train NNUE
networks is tried, where the training data comes from observed moves and not evaluations.

In order to carry out this work, a chess engine is required that supports neural networks
with the ability to customize the features and a way to train them. I decided to implement a
simple but capable classic chess engine based on well-known algorithms and optimizations.
Then change the evaluation to use NNUE networks with a versatile framework to build
feature sets. Finally, I implemented a training pipeline to train the networks and measure
their performance.

1.1 Source code

The source code for this work can be found online in the following repositories:

Repository Repository

Source code https://github.com/mlomb/cs-master-thesis

LATEX documents https://github.com/mlomb/cs-master-thesis-doc

1Introducing NNUE evaluation (Stockfish 12)
2Removal of handcrafted evaluation (Stockfish 16.1)

4

https://github.com/mlomb/cs-master-thesis
https://github.com/mlomb/cs-master-thesis-doc
https://stockfishchess.org/blog/2020/introducing-nnue-evaluation/
https://stockfishchess.org/blog/2024/stockfish-16-1/


2 Engine implementation

Building chess engines is a very discussed topic in the history of chess and thus very
well documented. The Chess Programming Wiki (CPW) [6] is a well-known source of
information to reference, which I will base my engine on. I aim to build a single-threaded
classic engine and only make use of the most prominent optimizations to keep it simple.
The engine strength is not that relevant, as it is only a tool to measure the relative per-
formance of board encodings. However, a competent one is required.

Classic chess engines are composed of two main components: the search and the
evaluation. The search is the process of exploring the tree of possible moves, which is
what this chapter is about. The evaluation determines how good the positions are for
who plays. As I mentioned in the introduction, classic engines used to use handcrafted
evaluations based on human knowledge. In my case, I will replace it entirely with a neural
network, explained in the following chapters.

2.1 Minimax search

A position P in chess is the state of the board along with any relevant information,
like castling rights, en passant, and the 50-move clock. Given a position P , we can call
f(P ) its evaluation, a number that provides an assessment of how good the position is,
computed either by a handcrafted function or a neural network.

One approach to approximate a good move given a reasonable function f could be to
evaluate all possible positions that can be reached with a single move and choose the one
that leads to the highest evaluation for the player who made the move. This idea can
be extended to consider actions taken by the other player, and so on, to a fixed depth.
Formally, this is called the minimax search algorithm [7].

In a minimax tree there are two kinds of nodes: maximizing nodes and minimizing
nodes.

• △ Maximizing nodes are the ones where the player to move is our player. These
nodes want to put the player in the best possible position, so they choose the action
that maximizes the evaluation. Note that the root node is a maximizing node.

• △

Minimizing nodes are the ones where the player to move is the opponent. These
nodes want to put the player in the worst possible position, so they choose the action
that minimizes the evaluation.
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Figure 1. A minimax tree of depth 4. The “best” move for the maximizing player is the
one that leads to the highest evaluation, marked in blue.

The algorithm recursively explores the tree to a fixed depth, evaluating the positions
at the leaves with f . The evaluation is then propagated up the tree, alternating between
maximizing and minimizing nodes, until it reaches the root node. After computing the
whole tree to a fixed depth, the “best” move is defined by the move from the root node
that maximizes the recursively computed evaluation (maximizing node).

Usually we do not want to run the search to a fixed depth, but rather for a fixed amount
of time. The algorithm itself runs to a fixed depth, so what we can do is run the search
in a loop, staring from depth 1 and increasing it by one each iteration until the time runs
out. This way, the “best” move found so far is always available. Note that we cannot draw
conclusions from any unfinished search, so the “best” move is the one found at the last
iteration. This approach is called iterative deepening, and when combined with a transpo-
sition table (a cache for evaluations), it is very effective, making following iterations faster.

My implementation uses a variation of the minimax algorithm called negamax. Nega-
max is a simplification of minimax that takes advantage of the zero-sum property of chess,
meaning that an evaluation for a player is equivalent to the negation of the evaluation
from the opponent’s point of view. Instead of having two kinds of nodes, all nodes are
maximizing nodes, and the evaluation is negated after the recursion. This simplifies the
implementation.
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2.2 Quiescence search

The search algorithm runs to a fixed depth, which causes a horizon effect. The horizon
effect manifests when the search stops at a position where a negative event (such as a
capture) is inevitable, but due to the fixed depth, the search results in weaker moves in an
effort to avoid the inevitable, preferring branches where the negative event (the capture)
has not happened yet.

PxQ

PxQ

PxQ

PxQ

PxQhorizon

Figure 2. Demonstration of the horizon effect (not a minimax tree, only showing
opponent nodes) when the search stops at depth 2. The capture PxQ (p Pawn takes Q

Queen) is inevitable. In the red branches, the capture has already happened. In the green
branches, the capture has not happened yet. Evaluations at the leaves favor the green
positions because those have an extra Q Queen. Since losing the piece is inevitable, green
positions may actually be weaker than red positions, but the search does not know that.

To fix this, instead of returning the evaluation of the position at the leaves, an additional
smaller search is done that only considers captures. This way, the search can continue until
a “quiet” position is reached, where no captures are available.

Since most of the positions the network will be evaluating are quiet due to the quiescence
search, it is important to make sure that the training set reflects that. Later on, only
positions that are quiet will be used to train the networks.
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2.3 Optimizations

Many optimizations were made to the engine to make it reach a decent depth in a
reasonable time, which makes the engine stronger. There are no novel improvements; most
are well-known techniques that have been used in engines for decades and can be found in
the Chess Programming Wiki [6].

The most prominent optimizations implemented are:

• Alpha-beta pruning: a way to eliminate big portions of the search tree by using
the branch-and-bound technique. It allows to prune branches that are guaranteed to
be worse than the most promising move found so far. This means that it does not
affect the result of the search, it only makes it faster.

Each node in the search tree has two values associated with it: α and β. α is the
best value found so far that the maximizing player can guarantee up to that node.
β is the best value found so far that the minimizing player can guarantee up to that
node. Note that α ≤ β and the maximizing player tries to “push” α up and the
minimizing player tries to “pull” β down.

When a node is visited, the algorithm checks if α ≥ β. If this is the case, the branch
can be pruned because the minimizing player can guarantee a value of β, which is
worse than the best value found so far.

• Move ordering: the order in which the moves are visited can have a big impact
on the effectiveness of the alpha-beta pruning. If the move ordering is optimal, the
effective branching factor is reduced to its square root, which means that the search
can go twice as deep for the same amount of computation [11, section 5.3.1]. In the
worst case, it is identical to minimax. There are a couple of ways to improve move
ordering, the most important being:

– MVV/LVA the most valuable victim, least valuable attacker is a simple heuris-
tic that orders the moves by the value of the captured piece minus the value of
the attacking piece. This way, the most valuable captures are evaluated first,
which are more likely to cause a cutoff.

• Transposition table: during search, a position may be visited many times with
different sequences of moves. This is called a transposition. The transposition table is
a large hash table storing information about positions that have already been visited.
This way, if a position is visited again, the engine can use the stored information to
avoid re-evaluating it.

Even if the depth of the stored evaluation is lower than the current depth (insufficient
to draw conclusions at the current depth), it can still be used to improve the move
ordering.

• Null move prunning: the null move observation states that there is almost always
a better move than doing noting (passing the turn or making a null move). When
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visiting a node, the engine tries to make a shallower search with the null move. If
the score is greater than or equal to β, the engine can assume that the position is
good enough to prune the search. The reasoning is that if the null move does not
worsen the position, then the real move will not either.

• Late move reductions: the idea is to reduce the depth for less promising moves,
that is, moves that are “late” in the move ordering. If the reduced search indicates
the move might be strong, the search is re-run with the full depth. This way, the
engine can save computation time by reducing the depth of less promising moves.

2.4 Time control

When running a tournament, it is important to limit the time of matches so that they
can finish in a reasonable time. This mechanism is called time control. Each player has
a certain amount of time to make all their moves and possibly an increment per move.
Choosing a good strategy to allocate time for each move is a complex problem on its own.
For this reason, I will use a fixed 100 milliseconds per move for all experiments. This way,
the results are not affected by an arbitrary strategy.

2.5 Implementation details

The engine is implemented in the Rust programming language. It uses the standard
UCI protocol 1 to communicate via standard input/output.

The most performance-critical part of the engine aside from the evaluation is move
generation, that is, given a position, list all available moves and make them. Fortunately,
there is a battle-tested library for it called shakmaty. The library provides a copy-make
interface instead of a make-unmake one, so I have to rely on a stack of positions when
doing recursion.

By default, the engine uses 128 MB of memory for the transposition table.

2.6 Lichess arena

Lichess is a popular online chess platform that allows users and engines to play against
each other. The engine developed for this thesis is available to be challenged on Lichess at
the following link:

https://lichess.org/@/LimboBot

Since the engine cannot use the fixed time per move in the Lichess arena, the engine
uses the increment plus 2% of the remaining time per move.

1Universal Chess Interface specification can be found here.
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3 Feature sets (board encodings)

To evaluate chess positions, the engine will use a neural network with an architecture
explained in detail in the next chapter. In this chapter, I will show how to build the one-
dimensional input vector for such network, which can be described entirely by a feature set.

A feature set is a set with a predicate attached to it. The elements can be anything,
but usually we want to represent chess concepts like piece locations, piece roles, colors, etc.
We may want to represent more complex patterns, so we can build feature sets by taking
the cartesian product of smaller sets. The predicate P (e) defines if the element or pattern
e is present (or active) in the (implicit) position. The predicate is generally written using
natural language.

Formally, given a set of concepts or tuples S and a predicate P , we can define a fea-
ture set as SP , where each element is called a feature. Each feature corresponds to a
value in a vector, which will be set to 1 if the predicate is satisfied for that element in the
position and 0 otherwise. This is the vector that will be used as input to the neural network.

Let’s consider some basic sets of concepts. For example, the following sets describe
positional information about the board:

Files = {a, b, ..., h}
Ranks = {1, 2, ..., 8}

Squares = {a1, a2, ..., h8}

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

a8 b8 c8 d8 e8 f8 g8 h8

a7 b7 c7 d7 e7 f7 g7 h7

a6 b6 c6 d6 e6 f6 g6 h6

a5 b5 c5 d5 e5 f5 g5 h5

a4 b4 c4 d4 e4 f4 g4 h4

a3 b3 c3 d3 e3 f3 g3 h3

a2 b2 c2 d2 e2 f2 g2 h2

a1 b1 c1 d1 e1 f1 g1 h1

And the following describe information about the pieces:

Roles = { p Pawn, N Knight, B Bishop, R Rook, Q Queen, K King}1
Colors = {# White,  Black}

For example, consider the feature set (Files × Colors)P where P is defined like
P (⟨f, c⟩) : there is a piece in file f with color c. A feature in this set will be active if there
is at least one piece in the board that makes the predicate true. In this case, disregarding
any other kind of information, like the piece’s role. Another possible feature set could be
(Files×Roles)Q, with a similar interpretation. An illustration of the active features of
these two feature sets is shown in figure 3.

Note that SquaresR is equivalent to (Files×Ranks)R ∀R.

1The color of the pieces have no meaning in the definition. They are present for illustrative purposes.
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0ZkZ0Z0Z
o0Z0Z0Zb
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0O0Z0Z
Z0J0Z0Z0
PZNZ0Z0Z
Z0Z0Z0Z0
a b c d e f g h

Feature set
(Files×Colors)P (Files×Roles)Q

Active features ⟨a, #⟩, ⟨a,  ⟩, ⟨c,  ⟩,
⟨c, #⟩, ⟨d, #⟩, ⟨h,  ⟩

⟨a, p⟩, ⟨c, K⟩, ⟨c, N⟩,
⟨d, p⟩, ⟨h, B⟩

P (⟨f, c⟩): there is a piece in file f with color c.
Q(⟨f, r⟩): there is a piece in file f with role r.

Figure 3. Active features of two feature sets for the same board.

3.1 Sum ⊕
The sum (or concatenation) of two feature sets A and B, denoted by A⊕B, is a new

feature set comprised of the features of both sets. These features do not interfere with each
other at all. Formally, given two feature sets SP and TQ, we can define the sum operator
as

SP ⊕ TQ = (S ∪ T )R

where R(e) =

{
P (e) if e ∈ S

Q(e) if e ∈ T

The sum operator is useful when we want to let the network find patterns combining
information between two sets of features.

Even though the two operands are feature sets, they are usually called “feature blocks”
since they are part of a larger feature set. The final feature set that is used for training is
a sum of many feature blocks.

3.2 Product ×
The product of two feature sets A and B, denoted by A×B, is a new feature set where

each new feature is a combination of the features of both sets. One way to interpret this
is that each new feature will be active if both features in the original sets are active at the
same time. Formally, given two feature sets SP and TQ, we can define the product operator
as

SP × TQ = (S × T )R

where R(⟨e0, e1⟩) = P (e0) ∧ Q(e1)

This operation is not that useful because it requires both predicates to be independent
from each other. This will be used specifically to define the King-All feature set and
potentially its variations.
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3.3 Known feature sets

In this section, I will define two of the most important feature sets known and used
extensively in existing engines.

3.3.1 All

This feature set is the most natural encoding for a chess position. It is called “All”
because it captures all the pieces. There is a one-to-one mapping between pieces in the
board and features:

All : (Squares×Roles×Colors)P
P (⟨s, r, c⟩): there is a piece in square s with role r and color c

Tuples in this set are active if there is a piece in the board that matches the role, color,
and square of the tuple. For example, the tuple ⟨e4, p, #⟩ is active if there is a white
pawn in the square e4. This way, for every possible piece, in every possible position, there
is a feature. The set has 64 ∗ 6 ∗ 2 = 768 features, which makes it very small and it is
very easy to compute which features are active.

3.3.2 King-All

Another feature set built on top of All is the King-All feature set, or “KA” for short.
For every possible position where the king of the side to move can be, there is a complete
copy of the All set:

King-All = SquareK ×All
K(s): s is the square of the king of the side to move

This encoding allows the network to understand better the position of the pieces in
relation to the king, which is very tied to the evaluation of the position.

The number of features is 64 ∗ 768 = 49152 features. There is a variation of this
feature set called “KP”2 which is the same but it does not consider the enemy king,
reducing the amount of features to 40960. There are other variations, such as KAv2 or
notably KAv2 hm that is currently the latest feature set used by Stockfish 16.1.

The features in this set are easy to compute, like in All, but since the number of
features is much larger, it is a lot harder to train and use in practice. I will restrain this
work to smaller feature sets that are easier to manage.

2More information about KP can be found here.
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3.4 Indexing

We need a way to map the tuples in a feature set to elements in the input vector. The
correct index for a tuple is computed using the order of the sets in the cartesian product
and the size of each set, like strides in a multi-dimensional array. For this to work, each
element e in a set S must correspond to a number between 0 and |S| − 1, we call this
bijective mapping I(e).

For example, the feature set (A×B×C)P has |A|× |B|× |C| features, and the feature
⟨a, b, c⟩ is mapped to the element indexed at I(a)×|B|× |C|+I(b)×|C|+I(c). The same
striding logic applies to feature sets built with the sum and product operators recursively.

3.5 Dead features

Consider the All feature set. For every square, role, and color each piece could be,
there is a feature. There are 16 tuples in the set that will never be active: ⟨a8..h8, p,
#⟩ and ⟨a1..h1, p,  ⟩ that correspond to the white pawns in the last rank and the black
pawns in the first rank. This is because pawns promote to another piece when they reach
the opponent side of the board, so no pawns will ever be found there. Effectively, these will
be dead neurons in the network, but this way we can keep the indexing straightforward.
Most feature sets will have dead features, and the same logic applies.

3.6 Summary

1. S: set of concepts (roles, colors, squares, files, ranks, etc.).

2. P (e): predicate that defines when the feature e is present in the (implicit) position.

3. SP : a feature set. Every element in SP is a feature. Features that satisfy P are
active.

4. SP × TQ = (S × T )R where R(⟨e0, e1⟩) = P (e0) ∧ Q(e1)

5. SP ⊕ TQ = (S ∪ T )R where R(e) =

{
P (e) if e ∈ S

Q(e) if e ∈ T

13



4 Efficiently updatable neural networks

NNUE ( NNUE Efficiently updatable neural network) is a neural network architecture
that allows for very fast subsequent evaluations when changes in the input are minimal. It
was invented for Shogi by Yu Nasu in 2018 [10], later adapted to Chess for use in Stockfish
in 2019. Most of the information described in this chapter can be found in the excellent
Stockfish NNUE documentation [18].

NNUE operates on the following principles:

• Input sparsity: The network should have a relatively low amount of non-zero inputs,
determined by the chosen feature set. The presented feature sets have between 0.1%
and 2% of non-zero inputs for a typical position. Having a low amount of non-zero
inputs places a low upper bound on the time required to evaluate the network in its
entirety, which can happen using some feature sets like King-All that triggers a
complete refresh when the king is moved.

• Efficient updates: From one evaluation to the next, the number of input changes
should be as low as possible. This allows for the most expensive part of the network
to be efficiently updated instead of recomputed from scratch.

• Simple architecture: The network should be composed of a few and simple op-
erators that can be efficiently implemented with low-precision arithmetic in integer
domain using CPU hardware (quantization).

There is a tradeoff between inference time and quality of the predictions, which affect
the number of nodes evaluated. If the inference is faster, more nodes can be evaluated, thus
reaching deeper in the search tree. Having higher quality predictions, which usually come
with a more complex model and/or feature set, can make stronger moves with shallower
searches and may improve prunning.

4.1 Layers

For this thesis, I have chosen to use a very simple NNUE architecture, which consists
of three linear (fully connected) layers and clipped ReLU activations. In the literature,
there are other architectures that make use of polling layers, sigmoid activations, and
others. Since this work is about experimenting with feature sets, I have chosen to stick
with something simple that has been proven to achieve good results.
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Linear layer A linear layer is a matrix multiplication followed by a bias addition. It
takes in features input values and produces out features output values. The operation
is y = Wx+ b, where:

1. x the input column vector of shape in features.

2. W the weight matrix of shape (out features, in features).

3. b the bias column vector of shape out features.

4. y the output column vector of shape out features.

If we call Ai the i-th column of the weight matrix W , the operation Wx can be
simplified to “if xi is not zero, take the column Ai, multiply it by xi and add it to the
result”. This means that we can skip the processing of columns that have a zero input, as
depicted in figure 4.
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Figure 4. Linear layer operation comparison. Figures from [18].

In the case of the first layer, the input is a very sparse one-hot encoded vector. This
means that very few columns will have to be processed, and the multiplication can be
skipped altogether due to all inputs being either 0 or 1. Skipping the multiplication reduces
the operations to only additions and subtractions.

Clipped ReLU This is a simple activation that clips the output in the range [0, 1]. The
operation is y = min(max(x,0),1). The output of this activation function is the input
for the next layer, and because of the aggressive quantization that will be described later,
it is necessary to restrain the values so it does not overflow.
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4.2 Efficient updates

When running a depth-first search algorithm, the state of the position is updated every
time the algorithm makes and unmakes moves, usually before and after the recursion.
NNUEs are designed to work with this kind of search since every time the algorithm
makes (or unmakes) a move, the changes in the position are minimal (at most two pieces
are affected in All), meaning that the amount of features becoming active or inactive is
minimal as well. This is depicted in figure 5.
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Figure 5. Partial tree of feature updates (removals and additions) for (Squares ×
Colors) (white’s point of view) in a simplified 3x3 pawn-only board.

To take advantage of this during search, instead of computing all the features active in
a position and then evaluate the network in its entirety, we can accumulate the output of
the first linear layer and update it when the position changes. Linear layers can be com-
puted by adding the corresponding columns of the weight matrix into the output, so when
a feature becomes active or inactive, we can add or subtract the corresponding column
from the output. When the evaluation is needed, only the next layers (usually small) have
to be computed.

Recall that the way I defined feature sets, they always encode the position from white’s
point of view. This means that its not possible to use the same accumulator for both
players. So when running the search, we have to keep two accumulators, one for white and
one for black, where the black board is flipped and has the colors swapped to match the
point of view.

During search, the first layer is replaced by two accumualtors to take advantage of this.
Figure 6 depicts how the output of both accumulators is concatenated depending on which
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player is moving, to later be passed through the rest of the network, which is computed as
usual.

Black Black

White White

Black BlackWhite White

White’s turn Black’s turn

: Incremental computation with 

Make white move

Figure 6. Concatenation of the first layer’s output after a move is made. Inspired by a
CPW figure.

4.3 Network

The network will be composed of three linear layers L1 through L3, each but the last
one followed by a clipped ReLU activation C1 and C2. The network has two inputs: it takes
the encoding (feature set) of a position from each player’s point of view. Each encoding
is passed through the same L1 layer (same weights), and then the output is concatenated
before passing it through the rest of the network. The first layer can be seen as a feature
transformer, and it must share weights to allow for efficient updates. The network can be
described as follows:

N : number of features in the feature set

1. L1 × 2: Linear from N to M (W1 weight, b1 bias)

2. C1: Clipped ReLU of 2 ∗M

3. L2: Linear from 2 ∗M to O (W2 weight, b2 bias)

4. C2: Clipped ReLU of O

5. L3: Linear from O to 1 (W3 weight, b3 bias)

The size of each layer is not fixed since it is a hyperparameter I will experiment with.
The network architecture is depicted in figure 7, with example parameters.
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Figure 7. Neural network architecture with N = 768, M = 256, O = 32. Not to scale.

4.4 Quantization

Quantization is the process of converting the operations and parameters of a network to
a lower precision. It is a step performed after all training has been done, which do happen
in float domain. Floating point operations are too slow to achieve acceptable performance,
as it sacrifices too much speed. This was necessary to implement to have a working engine.

Quantizing the network to integer domain will inevitable introduce some error, but it
far outweighs the performance gain. In general, the deeper the network, the more error is
accumulated, but since NNUEs are very shallow by design, the error is negligible. At the
end of the chapter, I do an analysis of the error introduced by quantization.

Since the objective is to take advantage of modern CPUs that allow doing low-precision
integer arithmetic in parallel with 8, 16, 32, or even 64 8-bit integer values at a time, we
want to use the smallest integer type possible everywhere to process more values at once.
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4.4.1 Stockfish quantization scheme

In this thesis, I will use the same quantization scheme used in the engine Stockfish [18],
due to its simplicity, and it has been battle tested. It uses int8 [−128, 127] for inputs and
weights, and int16 [−32768, 32767] where int8 does not fit the range of values we need.
To convert the float values to integers, we need to multiply the weights and biases by some
constant to translate them to a different range of values. Each layer is different, so I’ll go
through each one.

Input In float domain, inputs are either 0.0 or 1.0, and since they are quantized to
int8 we must scale them by sa = 127 (activation scale), so inputs are either 0 or 127.
During inference, the input values are not computed since the first layer is an accumulator.
However, it is important to note that the rows being accumulated are scaled by sa = 127.

ClippedReLU The output of the activation in float domain is in the range [0, 1] and we
want to use int8 in the quantized version, so we can multiply by sa = 127 and clamp in
the range [0, 127]. The input data type may change depending on the previous layer: if it
comes from the accumulator, it will be int32, and if it comes from a linear layer, it will
be int16.

Accumulator (L1) The purpose of this layer is to accumulate rows of the first layer’s
weight matrix, which is stored in int16. The values are stored in column-major order, so
a single row is contiguous in memory. Since we are accumulating potentially hundreds of
values, which are stored in int16 and scaled by sa = 127, we must accumulate in int32 to
avoid overflows. The output of this layer will be the input for the ClippedReLU activation.

Linear layer (L2 and L3) The input to this layer will be scaled to the activation range
because it takes the output of the previous ClippedReLU activation: sax. We want the
output to also be scaled to the activation range so it can be passed to the next: say.

To convert the weights to int8, we must scale them by some factor sW = 64 (value
used in Stockfish, efficient in SIMD because is just a shift): sWW . The value sW de-
pends on how much precision we want to keep, but if it is too large, the weights will be
limited in magnitude. The range of the weights in floating point is then determined by
± sa

sW
= 127

64
= 1.984375, and to make sure weights do not overflow, it is necessary to clip

them to this range during training. The value sW also determines the minimum repre-
sentable weight step, which is 1

sW
= 1

64
= 0.015625.

The linear layer operation with the scaling factors applied looks like:

sasWy = (sWW )(sax) + sasWb (1)

say =
(sWW )(sax) + sasWb

sW
(2)
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From that equation we can extract that, to obtain the result we want, which is the
output of the layer scaled to the activation range (say), we must divide the result of the
operation by sW (2). Also that the bias must be scaled by (sasW ).

The last linear layer (L3) is a bit different since there is no activation afterwards, so we
don’t want any scalings at all:

y =
(sWW )(sax) + sasWb

sasW
(3)

4.5 Implementation

The Stockfish repository provides an AVX2 implementation of the mathematical opera-
tions in C++. They have been carefully ported to Rust for this thesis. The implementation
was thoroughly tested using the Pytorch model as reference (output match).

4.5.1 Quantization error

To make sure the quantization is working as expected, I compared the actual output
of the quantized model (in Rust) with the float model (in Python) by running them in
thousands of positions.
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Figure 8. Comparison between the float model and the quantized model. N = 100000

In figure 8 we can see that the distribution of the evaluation of both models is almost
identical, indicating that the implementation is correct.

To measure the error introduced, it is better to do it in WDL-space since we can make
sense of values in that space. The errors are near zero, and almost all errors are within 0.03
units, which is a 3% difference in winrate. The Stockfish team has reported that errors in
quantization up to 5% do not affect the engine’s strength 3.

3Sopel’s message on Discord about this (official Stockfish server).
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5 Training

Given a feature set, the network architecture is completely defined, along with how to
encode a position into its inputs. This section will describe two proposed methods to train
the networks, each with its own loss function and training dataset.

5.1 Source dataset

Data is needed to train the network. The proposal for the thesis was to use the Lichess
database [9], which provides a CC0 database with all the games ever played on the site,
then score the positions using Stockfish. After some initial experiments, the networks were
not performing as expected. Upon further reaserch, I found out that I was working with
datasets too small for this task (order of hundreds of millions). I needed a larger dataset
(order of dozens of billions), but it was impractical for me to generate it. Fortunately, I
can use the same dataset that Stockfish uses to train its networks [20], which should work
well. Specifically, I went with the dataset used to train the first stage of the main network
for Stockfish 16.1, which is 135GB of compressed binpack files. It was built by running
Stockfish at 5000 nodes per move on multiple opening books4. Later stages use datasets
generated by Leela Chess Zero (LC0), which is more expensive to compute but has higher
quality evaluations.

The binpack format is a very efficient method of storing samples yet very complex to
decode. Fortunately, Stockfish provides a tool to export this data into a text representation.
I had to modify it to export it in the format I wanted. I changed the emitPlainEntry

function in nnue data binpack format.h to the code in Appendix A.6. The resulting file
was 2.59 terabytes in size and contained 48.4 billion samples. There is one sample per
line with the format:

FEN5 , Score , Best move

The file was too big to be practical, and it would wear off my SSD, so I made a tool
to compact the data into a similar format. The new format exploits the fact that samples
in a row belong to the same game. This means that contiguous FENs are a move from a
previous one, so it stores the move instead of the FEN:

FEN , Score , Best move ( , Actual move , Score , Best move ) *6

As you can see, the new format is compatible with the last one, so only one reader
was implemented. After compacting the data, the file went down to a manageable 522
gigabytes. Also, reading a single FEN and later applying moves to it is much faster than
parsing a FEN every time.

4An opening book is a database of start positions (lines of play) generated with some criteria.
5Standard notation to describe positions of a chess game. It is a sequence of ASCII characters.
6Repeated zero or more times.
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There are many positions in the dataset that are known to not be good for training.
Remember that the engine is doing quiescent search, so it does a smaller search looking for
quiet positions to evaluate. This means that positions where the “best” move is a capture,
or there is a check, are filtered out when building the training batch.

Each training method will generate a new derived dataset based on these samples.

5.2 Method 1: Score target

The main method to train the network will use the scores provided in the dataset as
targets. I expect the networks to learn to predict the evaluation of a position as Stockfish
would do.

5.2.1 Score-space to WDL-space

Evaluations in the dataset are values ranging from -10000 to 10000. We call this range
of values the score-space, also referred to as the centipawn scale (or something proportional
to it). We want the network to output the same values as the dataset, in score-space.

The WDL-space is a different scale in [0, 1] where 0 is a loss, 0.5 is a draw, and 1 is a
win. The WDL (win-draw-loss) model [19] states that the win rate for a position can be
modeled as a function of the evaluation of the position. The data shows that the logistic
function (sigmoid) gives a good approximation for the evaluation f(P ):

W(f(P )) = σ

(
f(P )− a

b

)
=

1

1 + e−
f(P )−a

b

where a and b need to be fitted to the data. The value of a is the evaluation where a
50% winrate is observed, and b indicates how fast the winrate changes when the evaluation
change. The fitted sigmoid is shown in figure 9, and the values obtained are a = 1.28 and
b = 297.21.
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Figure 9. WDL model function (sigmoid) fitted to 100 million evaluations in the dataset.

During training, it is better to use a loss function with the target and output of the
model in WDL-space instead of score-space. WDL-space has some advantages over score-
space:

• Large evaluations are “closer” together in WDL-space, since having a score of 7500
or 8000 is not that different in terms of winrate (less than 1%) than between 50 and
550 (more than 30%). This is desirable because the evaluations do not need to be
that precise when the outcome of the game is almost decided.

• The result of a game can be interpolated in WDL-space. If we introduce a new
parameter λ, we can interpolate the evaluation f(P ) and the game result r (in WDL-
space) using: λ ·W(f(P ))+ (1−λ) · r. This way, the information about the outcome
of the game can be used to steer the network in the right direction. This is not
implemented in this work.

• Values in WDL-space are smaller than in score-space, so it avoids large gradients.

5.2.2 Loss function

The loss function chosen is mean squared error (MSE) with a power of 2.6 (the value
used by the Stockfish’s official trainer) given by

L(y, f(x,W )) =
1

N

N∑
i

|W(yi)−W(f(xi,W ))|2.6

where. . .

1. N is the number of samples.
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2. y are the target scores.

3. f is the model.

4. x are the inputs (encoded feature sets).

5. W are the parameters of the model.

6. W is the winrate function that maps from score-space to WDL-space.

5.3 Method 2: PQR triplets

This is an additional technique I wanted to try, described in [1]. The method is based
on the assumption that moves in the training data are better than random. In the blog
they used human moves from the Lichess database [9], so they rely on the fact that humans
make good or near-optimal moves most of the time, even if they are amateurs. In my case,
I will use Stockfish moves, which are extremely good. This method does not use the scores
provided; it will have to learn them from scratch. Of course this is way harder to train,
but I’m curious to see how far the following idea can go.

Remember that we are trying to obtain a function f (the model) to give an evaluation
of a position. The idea is based on the following two principles:

1. For two positions in succession P → Q observed in a game, we will have f(P ) = −f(Q).
This comes from the fact that the game is zero-sum.

2. Going from the position P , not to the observed position Q, but to a random position
P → R, we must have f(R) > f(Q) because the random move is better for the next
player and worse for the player that made the move.

If these reasonable assumptions hold, a loss function that expresses the equality in (1)
and the inequality in (2) can be constructed.

5.3.1 Loss function

The loss function is the sum of the negative log-likelihood of the inequalities: f(R) > f(Q),
f(P ) > −f(Q) and f(P ) < −f(Q). The last two are a way to express the equality f(P ) = −f(Q).
Each term is the negative log-likelihood function of the known Bradley-Terry model [2],
that models the probability of an item (in our case a position) “beating” another item.

The loss function is given by

L(xP , xQ, xR,W ) =
1

N

N∑
i

− log (σ(ri − qi))

− log (σ(pi + qi))

− log (σ(−(pi + qi)))

where. . .
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1. N is the number of samples.

2. xi are the inputs (encoded feature sets) for the i ∈ {P,Q,R} positions.
3. f is the model.

4. W are the parameters of the model.

5. W is the winrate function that maps from score-space to WDL-space.

6. W(x) = 2W(x)− 1 is a function that maps from WDL-space [0, 1] to [−1, 1], so that
W(x) = −W(−x).

7. pi = W(f(xP
i ,W )), qi = W(f(xQ

i ,W ), ri = W(f(xR
i ,W ). Note that quantiza-

tion is happening in this method too, so the output of the model is being scaled
appropriately.

Let’s break down the loss function in a more intuitive way. We want the loss function
to be small when the model is generating the correct evaluations and large when it is not.
Let’s look at the graph of the function − log(σ(x)):
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The function approaches 0 when x grows and approaches ∞ when x goes to −∞.
Let’s look at each of the terms:

1. − log(σ(ri − qi)): This term is small when ri > qi, and large when ri < qi.

2. − log(σ(pi + qi)): This term is small when pi > −qi, and large when pi < −qi.
3. − log(σ(−(pi + qi)): This term is small when pi < −qi, and large when pi > −qi.

The term (1) holds the inequality f(R) > f(Q), and the terms (2) and (3) hold the
equality f(P ) = −f(Q). The loss function is the sum of the three terms, so the model is
encouraged when it satisfies the inequalities and penalized when it does not.
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5.4 Setup

The project is written in two languages: Rust and Python. The Rust part is used to
process dataset files, generate statistics, and provide final training batches for Python to
consume. The Python part defines the Pytorch model, runs the training loop, quantizes
the model, and runs the evaluations.

The training process is started by running a Python script (scrips/train.py) and
it requires to define the model architecture (number of neurons on each layer), general
training parameters (learning rate, batch size, epochs, checkpoints, etc.) and the feature
set to use, which in turn determines the size of the batches. For example, if PQR is used,
the size of a sample is three times the size of the feature set times two (because it is
siamese), and if it is score target, it is the size of the feature set times two plus one for the
target score.

To orchestrate training runs, the platform Weights and Biases (WandB) is used. It
provides automatic sweeping of hyperparameters, logging of metrics, and visualizations.
Results are exported from the platform in CSV and then processed by Python scripts.

The training data has to be converted to an actual tensor of floats to be consumed by
Pytorch. This is done by a Rust subprocess running the subcommand batch-loader that
reads the training data file and generates training batches for the specified feature set in a
shared memory buffer.

The batch generation process is heavily parallelized. Let’s call N the number of threads
(N = 8 was used). When the process starts, it splits the dataset file into N equal parts
and assigns each part to a thread. Each thread reads samples sequentially and builds the
batch in a buffer. The buffer is then sent to the main thread, where it is copied to the
shared memory buffer.

The Python script copies the data from the shared buffer at the start of each iteration,
allowing Rust to generate the next batch (in the CPU) while Pytorch is training the current
batch (in the GPU). To coordinate the memory access between the two processes, a single
byte is sent using standard I/O. The sequence of a training loop is shown in figure 10.
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Figure 10. Sequence of steps to send a batch from the batch-loader subprocess in
Rust to Pytorch.

Given that the input vector is multiple-hot encoded, the data written by the Rust pro-
cess are not float values. Instead, they are 64-bit integers acting as a bitset. Before passing
the vector to the model, it is expanded into floats. This means 64 floats can be packed
into a single 64-bit integer, meaning a 96.875% reduction in memory usage (from 256 to
8 bytes). The speedup obtained by this optimization was substantial. The compression
can be further improved using sparse tensors, but it is not implemented in this work.

27



6 Experiments and results

Now that the engine, the tools, and the methodology are defined, we can proceed to the
experiments. Experiments will be divided in three sections: motivation, experiment, and
results. The motivation will explain why I think the experiment is relevant and present
possible hypotheses. The experiment will describe configurations to train different models,
how they will be evaluated, and what my expectations are. The results will present the
data, explain whether my hypothesis was correct or not, and give a brief conclusion.

Every model’s training configuration is defined by the following variables:

• Feature set: Determinates the encoding of the position and thus the number of
inputs of the model. It conditions which patterns the network can learn. Experi-
menting with this is the main focus of this thesis.

• Network architecture: The size of each layer in the network. The first layer (L1)
is the feature transformer, and it is efficiently updated. The following layer (L2)
should be tiny due to the NNUE architecture. The size of the model (its complexity)
roughly determines how many patterns the network can learn.

• Dataset: The positions to train on. The dataset used is explained in detail in
chapter 5. In summary, there are 48.5 billion positions to train on, and the dataset
remains constant across all runs. About 5 million positions are used for validation.

• Training method: Can choose to use either score targets or PQR triplets. This
determines the format of the samples as well as the loss function. All experiments
will train using score targets, unless specified. Methods were explained in detail in
chapter 5.

• Training hyperparameters: The usual machine learning hyperparameters for
training, such as batch size, learning rate, and scheduler. I used the same epoch
size used in Stockfish, where each epoch is 100 million positions. Each training run
will last for 256 epochs, which means the network is trained in 25.6 billion positions
(recall that some of the original 48.5 billion positions are skipped).

Once training is completed, the models will be evaluated depending on the experiment.
To assess the performance of a model or to compare a set of models, the following indicators
are used:

• Loss: The training and validation loss are used to detect overfitting and other possi-
ble problems. It can’t be used to measure the performance of a model. Bigger models
must have much better predictions to outweigh the cost of having slower inferences
and thus fewer node visits. It’s a tradeoff.
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• Puzzle accuracy: The percentage of moves correctly predicted by the engine in
Lichess puzzles. Each puzzle may contain multiple moves, and the engine has 100
milliseconds per move. Since the engine is not that strong, it does not solve 100% of
puzzles like many other engines do, so I expect differences in this metric to be good
indicators. A small set of puzzles is used during training as (a very bad) proxy for
the engine’s strength, to have early insight of the strength and to detect catastrophic
failures that did arise. A bigger set of 85,000 puzzles is used after training.

• Relative ELO rating: A tournament is played between different models to deter-
mine their relative strength. Ordo is used to compute the ELO of each model based
on the results of the tournament. This is the most important metric, as it is the most
reliable way to compare the strength of engines.

• Training duration: The amount of time it takes to train a model. This is a one-
time operation, and it does not affect the performance of a model. However, it does
condition which and how many experiments I can run.

All networks that are not in the first experiment (the baseline) are trained four times,
and a tournament is played between the epochs 192 and 256 of each network (8 networks
in total). I have observed a difference of 30 elo points between runs, so this step is crucial
to have sensible results. In the appendix are the results of each run and tournament.

6.1 Baseline

Motivation. Experiments that will follow will focus on trying out different feature
sets, so it is natural to keep every other variable constant. Since the dataset is fixed and
the feature set is going to be changing, it remains to find acceptable values for the network
architecture and the training hyperparameters.

Because of time and resource constraints, I decided to set the training hyperparameters
to (similar) values that give good results in the official Stockfish trainer: a batch size of
16384, a learning rate of 0.0005, and an exponential decay factor of 0.99. These
values showed acceptable results during early stages of development and will remain fixed
for all runs.

It remains to find a good network architecture. Bigger networks may have lower loss
and predict better, but they will also have slower inferences. This is the tradeoff between
inference time and node visits (more depth), which are also affected by the quality of the
prediction due to better pruning. So the model must be so much better to compensate the
slowdown in inference.

Experiment. In this first experiment, I will try different sizes of L1 and L2 to
find an acceptable tradeoff for future experiments. I will run a grid search with L1
∈ {256, 512, 1024, 2048} and L2 ∈ {32, 64, 128, 256}. The feature set used to train will
be All, the canonical set with 768 features.
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I expect that there will be a model that performs best, and other models that are
smaller (need stronger predictions) and bigger (need speed to visit more nodes) perform
worse.

Results. Looking at the result heatmaps in figure 11, the first thing to notice is that
training and validation losses behave as expected. If the model is more complex, meaning
the number of parameters (which is dominated by 768 ∗ L1 + L1 ∗ L2) is higher, the loss
is lower and the model predicts better.

When the models are loaded into the engine and evaluated in a tournament, we can
see that when L2 drops, the performance drops dramatically. This is due to the fact that
the inference time is mostly dominated by L2. This result suggests that it may be a
good idea to explore even lower values of L2, such as 16 or even 8. However, the SIMD
implementation requires L2 to be a multiple of 32, so it needs a refactor to keep being fast.
So, instead of fiddling further with SIMD, I decided to keep L2 at 32.
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Figure 11. Network architecture sweep results (L1 × L2).
Table with details in Appendix A.1.
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If L2 is kept constant, the best L1 is neither the smallest nor the biggest. If L2 = 64
or L2 = 128 there is a clear lead of L1 = 512 in both. In the case of L2 = 32, the best
L1 is not clear because the differences in rating are small and are within margin of error,
excluding L1 = 256 which is definitely worse. Because training lower values of L1 is faster,
I opted for L1 = 512 due to the difference being small and being the best in other L2
values.

So, further experiments will use L1 = 512 and L2 = 32. For reference, Stockfish
currently uses L1=2560, and employs (lots of) more tricks to make it even faster. The
values selected here are specific to the current implementation of the engine, since it may
change if more optimizations are made (the tradeoff is altered). For this reason, no further
modifications to the engine were made after starting with the experiments. We can now
proceed with more interesting experiments.

6.2 Axis encoding

Motivation. Looking back at the networks generated by All in baseline runs, the
learned weigths of most neurons in the feature transformer layer (L1) are related to the
movement pattern of the pieces. A neuron in the L1 layer is connected to every feature
in All with some weight. Looking at the values (intensities) of the weights in these
connections, we can infer what the neuron is looking for in the input features.

Let’s take the example in figure 12, which depicts the Square part of the features
where the role is R Rook.

(a) # White (b)  Black

Figure 12. Weights of a neuron in the L1 layer, which are connected to features in
All where the role is R Rook. The intensity represents the weight value, and the color
represents the sign (although not relevant).
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This particular neuron learned to recognize the presence of a R Rook, affected by the
pattern of another potential rook in the same file or rank (other pieces may be involved,
but I am focusing on rooks for the example). Doing so, it had to relate one feature for every
potential square where a rook could be for that specific center location, which restrains the
network from learning more complex patterns, and it is harder to train because you need
more samples to account for all possible combinations.

What if we add a feature that describes “there is a # White R Rook in the 4th rank”?
Certainly, this would make the network’s job easier, as it would only need to learn the
presence of rooks in the corresponding file or rank instead of every square. This idea can
be extrapolated to diagonals to ease patterns with B Bishops and the Q Queen.

More examples of this behaviour can be found in Appendix A.2.1, showcasing diagonal
patterns and the N Knight movements, although they do not move straight through axes.

Experiment. I built blocks of features for each natural axis of a chess board, which
coincide with the movement pattern of the pieces:

Horizontal Vertical Diagonal 1 Diagonal 2
(across files) (across ranks)

In table 1 I present the feature blocks. Each block will encode whether there is a piece
with the role and color in a specific location along that axis, as explained in the example.

Table 1. Axis feature blocks

Depiction Block name Definition
Number of
features

H (Files × Roles×Colors)P 96

V (Ranks × Roles×Colors)P 96

D1 (Diags1 × Roles×Colors)P 180

D2 (Diags2 × Roles×Colors)P 180

P(⟨x, r, c⟩): there is a piece in x with role r and color c

With this blocks, I built different feature sets (listed in table 2): one group of feature
sets is just combinations of all the blocks, and another group which is the same as the first
but alongside the All feature set. The second group is the aim of the experiment; it has
the classic All feature set but includes the axis blocks to see if the network can benefit
from them. The first group, which does not include All is to know how far the network
can go only with the blocks presented.
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Table 2. Axis feature sets

Depiction Feature set
Number of
features

⊕ H⊕V 192

⊕ D1⊕D2 360

⊕ ⊕ ⊕ H⊕V ⊕ D1⊕D2 552

All ⊕ ⊕ All⊕H⊕V 960

All ⊕ ⊕ All⊕D1⊕D2 1128

All ⊕ ⊕ ⊕ ⊕ All ⊕ H ⊕ V ⊕ D1 ⊕ D2 1320

I expect that the feature sets that are sums of single axes ( ⊕ , ⊕ and

⊕ ⊕ ⊕ ) will perform worse overall, since to capture the exact position of
pieces in the board, the network will have to learn to relate at least two features for every
location. This information is already available when All is present.

The feature sets that include All (All ⊕ . . .) should perform better than without,
provided that the idea explained in the motivation holds.

For each of the proposed feature sets, I will train a network and evaluate its performance
relative to each other using a tournament. I expect to see them ranked in the reverse order
as presented in the table (more extra axes better).

Results. The results in table 3 show that indeed, adding the axis blocks makes the
network validation loss slightly lower, from 0.00313 in All to 0.00306 including all four
blocks. However, this improvement in loss is not significant enough to make the engine
stronger to compensate for the (small) performance hit of having more features. As you
can see in the table, including more axes makes the loss decrease slightly, yet the rating
decreases from almost no difference to a huge factor.

All three feature sets that do not include All unsurprisingly perform much, much
worse, even having fewer features (thus being faster). The feature set H+V+D1+D2 has
a 25% higher loss than All and 183.5± 4.1 less rating than All. The other feature sets
in this group perform even worse, as it was expected.

I discovered that the accuracy of puzzles is not a good proxy of an engine’s strength,
given that there is a 444 rating difference yet 3% a difference in move accuracy. I believe
that the reason lies in the fact that puzzles may be more strategic than positional. I will
drop the puzzle accuracy metric in future experiments.
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Table 3. Axis feature sets results

Feature set
Number

of features
Val. loss

min
Rating

elo (rel. to All)
Puzzles
move acc.

⊕ 192 0.005810 -384.3 ± 5.1 0.8618

⊕ 360 0.006707 -444.1 ± 5.1 0.8517

⊕ ⊕
⊕

552 0.003907 -183.5 ± 4.1 0.8748

All (reference) 768 0.003134 0.0 0.8865

All ⊕ ⊕ 960 0.003082 -27.1 ± 4.1 0.8851

All ⊕ ⊕ 1128 0.003087 -26.1 ± 3.8 0.8814

All ⊕ ⊕
⊕ ⊕

1320 0.003067 -58.7 ± 3.7 0.8766

The next experiment will focus on adding more specific features instead of more broad
ones.

6.3 Pairwise axes

Motivation. Imagine that in a file there are three pieces: an enemy R Rook, a
p Pawn and a N Knight. There are many possible configurations for these pieces on
the file. The influence in the evaluation by those pieces is very related to the posi-
tion of pieces everywhere else. However, I want to see if to understand a single file,
the actual position of the pieces is less important than the relative order between them:
pNR,pRN,NpR,NRp,RpN,RNp. In other words, provide the network features based
on the order of the pieces instead of the actual position. This way, I believe that the net-
work can pick up whether pieces are pinned, protected by other pieces, or can attack other
pieces.

I propose to make a feature for each possible pair of adjacent role and color over an
axis. Let’s consider the a file (vertical axis), following the example before:
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There are many configurations for the three pieces, and the idea is to collapse all of
these into two features: the pair of pieces (R , p#) and the pair of pieces (p#, N#).
This way, the network can learn that the R Rook can capture the p Pawn, and that the
N Knight is protected behind the p Pawn. The network can learn this situation using two
features instead of learning it for every possible configuration.

In contrast to the previous experiment where the features were more general (“there is
a # White R Rook in the 4th rank”), the proposed features here are more specific: “there
is a  Black R Rook next to a # White p Pawn in the ‘a’ file”.

Experiment. I developed two feature blocks: for the horizonal and vertical axis. The
blocks are defined in table 4:

Table 4. Pairwise feature blocks

Depiction
Block
name

Definition
Num. of
features

PH

(Ranks× (Roles×Colors)× (Roles×Colors))P

P(⟨r, r1, c1, r2, c2⟩): there is a piece in rank r with role r1
and color c1 to the left of a piece with role r2 and color c2

1152

PV

(Files× (Roles×Colors)× (Roles×Colors))Q

Q(⟨f, r1, c1, r2, c2⟩): there is a piece in file f with role r1
and color c1 below a piece with role r2 and color c2

1152

Note that it is important to consider the order of the pieces in the pair, as expressed in
the direction of the definition (left and below). This makes sure features are not mirrored,
since we want to differentiate between both. In code, this is handled by iterating over the
pieces and building the pair in the same order every time.
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The following figure shows what pairs of pieces (features) are considered for the hori-
zonal and vertical axes in a complete board:

8 0ZrZ0Z0j
7 o0Z0Z0o0
6 Koqo0Z0o
5 Z0Z0Z0Z0
4 0OPZ0L0Z
3 O0ZPZRO0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

8 0ZrZ0Z0j
7 o0Z0Z0o0
6 Koqo0Z0o
5 Z0Z0Z0Z0
4 0OPZ0L0Z
3 O0ZPZRO0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Pairwise horizontal (PH) Pairwise vertical (PV)

Since the blocks need at least two pieces to generate a feature, if there is only one piece
over an axis, there are no active features. So, these blocks can’t be used alone; they need to
be combined with other features that provide that information. The most obvious choice
is to combine them with the All block.

The feature sets to be evaluated are All ⊕ PH (1920 features), All ⊕ PV (1920
features), and All ⊕ PH ⊕ PV (3072 features). Like before, a network will be trained
for each feature set, and a tournament will be played to determine the relative elo to the
All baseline.

I expect that the networks are able to take advantage of the specific features, enough
to counteract the loss in performance due to the big increase in the number of features and
slower updates.

Results. The results in table 5 show that there is a clear difference in performance
between and . The feature set All ⊕ has a lower loss and rating than its

counterpart All ⊕ . It is not clear why the vertical pairs achieve a better rating than

the horizontal pairs since they have a similar amount of feature updates (Appendix A.5).

Both All ⊕ and All ⊕ perform worse than All. It seems that the networks
were able to take advantage of the pairs since the loss is lower than the reference. However,
it is not enough to counteract the increase in feature updates.

Surprisingly, the feature set with both axes (All ⊕ ⊕ ) has a similar rating to

All ⊕ , probably counteracted by having an even lower loss.
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Table 5. Pairwise encodings results

Feature set
Number

of features
Val. loss

min
Rating

elo (rel. to All)

All (reference) 768 0.003134 0.0

All ⊕ 1920 0.003033 -38.2 ± 4.8

All ⊕ 1920 0.002946 -8.4 ± 5.0

All ⊕ ⊕ 3072 0.002868 -37.6 ± 4.9

Future work could gather some statistics about the pairs and determine if skipping
some pairs is worth it. For example, pairs related to pawns cause many updates since it is
the most common piece and may not be that useful. Reducing the number of pairs would
lower the number of updates and may overtake All.

I did not bother implementing diagonal pairs ( and ) due to the adverse result

of the other axes.

Up to this point, I have been trying to encode the position of the pieces in different
or smarter ways, with no avail. It may seem that the network is able to extract all the
information it needs from the most basic All feature set. Making the information available
in another form makes no difference, as opposed to what I originally thought.

Further experiments will focus on features not related to the position of the pieces but
to other aspects of the game, inspired by handcrafted evaluations.

6.4 Mobility

Motivation. Mobility in chess is a measure of the available moves a player can make
in a given position. The idea is that if a player has more available moves, the position is
stronger. In [16] it was shown that there is a strong correlation between a player’s mobil-
ity and the number of games won. This metric has been used extensively in handcrafted
evaluations, and I propose to include this information as features for the neural network.

Experiment. There are two ways to go about encoding mobility:

• Bitsets (per piece type): Provide the exact squares each piece type can move to.
The number of features would be 64∗6∗2 = 768. The problem with this approach is
not the amount of features, but the number of updates to the accumulator per move
is very high, which slows down the search.
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Board
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B Bishop
 Black

B Bishop
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Q Queen

• Counts (per piece type): Use the number of available moves per piece type as
features. This means having a feature for each possible count value, which are a lot
less feature updates. To find which values to include as features I computed the total
mobility for each piece role in 2 billion boards, shown in figure 13. From the data,
we can extract the range of values to use as features:

Piece role Min Max

p Pawn 0 8+
N Knight 0 15+
B Bishop 0 16+
R Rook 0 25+

Q Queen 0 25+
K King 0 8
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Figure 13. Total mobility values for each piece on the board. Computed using 2 billion
boards. The value 0 for the N Knight, B Bishop, R Rook, and Q Queen has been excluded
from the plot, as it is very common.

Each approach was implemented as a block:

Table 6. Mobility feature blocks

Block name Definition Number of features

MB

(Squares×Roles×Colors)P

P(⟨s, r, c⟩): there is a piece of role r
and color c that can move to square s

768

MC

({0, 1, . . .} ×Roles×Colors)P

P(⟨m, r, c⟩): the value of mobility for
a piece of role r and color c is m

206

The blocks will be combined with the All feature set. Neither of the blocks can be
used alone since they do not carry the information to deduce every piece on the board
(trivially).

The feature sets to be trained and evaluated are All ⊕ MB (1536 features) and All
⊕ MC (974 features). Like prior experiments, a network will be trained for each feature
set and evaluated in a tournament.
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Results. The results in table 7 show that the blocks did not provide features of enough
quality to improve the network predictions enough to overcome the cost of making more
feature updates. I have underestimated the cost of a feature update; that was not a prob-
lem in previous experiments. The block MB has, on average, 10.03 feature updates per
move on average, and the block MC has 3.82 (see Appendix A.5). In comparison, the All
feature set has 1.58 feature updates per move on average. Even though the block MB has
almost 3 times the number of feature updates, it has better performance than MC. This
is attributed to having a 7% lower loss, which compensates the cost of the updates.

Table 7. Mobility encodings results

Feature set
Number

of features
Val. loss

min
Rating

elo (rel. to All)

All (reference) 768 0.003134 0.0

All ⊕ MB 1536 0.002824 -260.9 ± 5.4

All ⊕ MC 974 0.003032 -280.9 ± 5.6
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6.5 PQR

Motivation. During the initial research, I came across [1] which seemed an interesting
approach to train a neural network to evaluate positions. Since it was released in 2014, it
predates the NNUE era, and the training data was suboptimal (Lichess database [9] with
human moves). So I decided to try to replicate the idea using modern datasets, better
moves, and a proper engine. The “PQR” method itself was explained in detail in the pre-
vious chapter. Remember that P is a position in the dataset, Q is the position obtained
by making the “best” move according to the dataset, and R is a random position obtained
by making a random move from P such that R ̸= Q.

Before starting the experiment, I checked if existing networks trained with the con-
ventional method behaved under the principles of the PQR method: f(P ) = −f(Q) and
f(R) > f(Q). In the left plot of figure 14, we can see that values of f(P ) and f(Q) are
negatively correlated, which supports the principle that f(P ) = −f(Q). In the right plot,
we can see that the distribution of the difference between f(R) and f(Q) is mostly positive,
which supports the principle that f(R) > f(Q). This shows that the principles that the
PQR method relies on are properties that manifest in existing models.
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Figure 14. Analysis of N = 4000 PQR samples using a model trained with target scores
and the feature set All.
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Experiment. I will train the canonical All feature set with this method in two ways:

A. Train from scratch. The network is initialized with random weights and trained
with the PQR method. This is what the original authors did, and I do not expect
to reach the performance of models trained with the target scores method. Using
precomputed evaluations as a target is a lot simpler for the model since it only has
to learn to mimic the scores.

B. Continue from a checkpoint. A strong checkpoint trained with the other method
is used to initialize the network. This way, the network does not have to learn too
much at once and may enable it to improve the existing parameters. I believe that
two scenarios are likely to happen: the model improves very slowly, or it completely
forgets what it has learned before and ends up like a model trained from scratch.
The best scenario is that the model improves slowly, proving that it can be used to
further optimize existing models.

The training data is not filtered the same way as with target scores, where it was
known that captures and checks are detrimental. When choosing a random position R
from a position P , the number of available moves to choose from is m (including P → Q).
Given a parameter M , a training sample is skipped if m < M . The reasoning behind M is
that the bigger the pool to choose from, the more likely it is to find a move that is worse
than P → Q. Note that M ≥ 2 since otherwise there is only one available move.

Choosing fixed values of M is not ideal since the number of available moves varies
throughout the game. A value of M will be chosen for every turn in the game, based on
the distribution of available moves for that particular turn and color. It is known that
the white player has more available moves on average than the black player, so M will be
different for each.

Four networks will be trained from scratch, where M is chosen to filter 0%, 25%, 50%,
and 75% of samples with the least available moves for that turn. In figure 15, we can see
the value of M changing throughout the game for each quantile. Note that when p = 0,
M = 2 in every turn, so no filtering is done.
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Figure 15. Heatmap showing the number of available moves for white throughout 100
turns (full moves). The color gradient indicates the density of occurrences in the dataset
(N=25 million) for positions with a certain number of available moves in a given turn. The
plot for black is not shown because it is very similar. The dataset provides positions that
start at turn 9.
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(A) Results. The networks are able to learn with the PQR method from scratch
without the use of existing evaluations like the other method. In figure 16, we can see the
evolution of the ratings of each of the networks trained, along with a network trained with
target scores.
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Figure 16. Performance of networks trained from scratch using the PQR method varying
the filtering parameter (p = 0, 0.25, 0.5, 0.75). A network trained with target scores is
shown for comparison.

The target scores method outperforms the best PQR network by 235± 41 rating. This
result was anticipated since the target scores method is a lot simpler for the network to
learn.

Contrary to what was expected, the larger the pool of moves to choose from (higher
values of p), the worse the network performs. It was expected that with a higher M , it
was more likely to find a move that was worse than P → Q, but this was not the case. A
possible explanation is that the positions located in the bottom cloud of the distribution in
figure 15 are good training samples for this method. In the other method, these positions
were excluded since most are check positions. The experiment was run again, including
check positions, but the results were the same.
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When looking at the behaviour of f in figure 17, it does resemble what we expect to hap-
pen, a negative correlation between f(P ) and f(Q) and a positive difference between f(R)
and f(Q). However, the correlation is a lot more spread out, specially in f(P ) = −f(Q),
which is crucial that they are as close as possible since the network would be predicting
different scores for the same position but the other perspective.

A possible improvement could be to try to increase the weight of the f(P ) = −f(Q)
inequalities in the loss function to force the network to be more like the target scores
method. This means reducing the spread in the left plot and giving less importance to
high differences of f(R)− f(Q) since the values should not be as extreme. This is left for
future work.
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Figure 17. Analysis of N = 4000 PQR samples using the epoch 256 of the model trained
from scratch with no filtering (p = 0.0) and the feature set All.

Of course everything boils down to the dataset, and the dataset used is not ideal for
PQR. There are no guarantees that the P → R move is not similar in strength or, in fact,
worse than P → Q. Not only that, but the scale is not the same for all samples. Positions
that have a small but significant difference in strength are being penalized the same way
as more extreme ones. Trying to filter by the number of available moves did not work, so
there is probably no way around it.

A good dataset for PQR can be generated using multiple lines of play (maybe dozens)
and only include samples where there is a significant difference in strength between the
P → Q and P → R moves. This also can prevent zugzwang7 positions from being included.
It is necessary to decide what threshold is considered significant. One may analyze the

7A zugzwang position occurs when any move a player can make worsens their position.

45



distribution of differences and find something good, but in the end we are trying to convey
this information to the network, which is what target scores already does, and better. Also,
to generate a new dataset with billions of samples a lot of time and compute resources are
required.

(B) Results. The checkpoint used to continue training is epoch 256 of the network
trained with target scores that appear in figure 16 (rightest purple dot). The training was
done for four different values of learning rate: 0.0005 (previous initializer), 0.0003, 0.0001,
and 0.00005. Different values were used to make sure the network does not forget “too
fast” what it has learned before. The results are shown in figure 18.
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Figure 18. Performance of networks fine-tuned with the PQR method, starting from a
target scores checkpoint. The dotted line represents the rating of the checkpoint, which all
ratings are relative to.

There are a few things to notice in this graph. First, there is a sudden jump from
the checkpoint to the first epoch. Since the checkpoint is the starting point, all networks
jump in the first epoch to +100 rating. This is surprising, since I expected the network
to either improve very slowly or forget what it has learned before. Second, it shows that
there is an upward trend, which is good. This means that we can use the PQR fine-tune
method to further optimize existing models. Third, the lower the learning rate, the better
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the network performs. This is expected, since we don’t want the network to deviate too
fast from the original network. At the same time, it is a bit strange since the steps are not
that big to have it gain 100 elo in just one epoch (6103 gradient updates).

I believe this might be related to the fact that the starting point was not very strong,
and changing to PQR allowed it to get out of a local minimum that it was stuck in. The
validation of this hypothesis is left for future work. To explore this further, one could
intercalate training between target scores and PQR to see if it helps the network improve
faster.
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7 Final words

7.1 Conclusions

The main takeaway from this work is that the All feature set is at a sweet spot that is
hard to beat. Bigger feature sets are known to be more effective, like King-All, but this
work was restricted to feature sets with a few thousand features to be practical to train.

The feature set All has all the information of the board, it is easy to implement, cheap
to compute which features are active, and it has a low number of feature updates per move
(1.58 on average). This makes it very effective and thus very fast when used with a NNUE
network.

When building other feature sets, I have underestimated the cost of extra feature up-
dates. The performance hit of making more updates is, in the feature sets I tested, greater
than the performance gain of having more information available. In the end, NNUE net-
works are trying to reduce the number of dot products, which is what each feature update
does.

It has been a few years since the introduction of NNUE networks and feature sets, in
particular variations of the King-All feature set, which uses at its core the All feature
set. The community has not found a better feature set or additional blocks of features
to add alongside it. Not only new features need to improve the network prediction, but
they also need to make few updates per move and be fast to compute, which is a hard
balance to achieve. To make it worse, feature engineering in this kind of task is very slow.
Each iteration takes hours (or days) of training and evaluations to see if there is a (usually
small) improvement.

The PQR method showed promising results. A network can be trained with this
method, but since the data is inadequate, it is not able to reach the performance of net-
works trained with target scores. Fine-tuning existing networks with PQR has shown to
be effective; it gives a bump in performance and steadly improves the network. However,
more research is needed due to the unexpected surge in rating after the first epoch.
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7.2 Future work

Training NNUEs is a daunting task, and there are lots of variables that affect dramat-
ically the performance of the networks. Many decisions were made in this work to reduce
the scope of the project, so naturally many variables were left unexplored.

The following are some key points that could be explored in a future work:

Dataset: A great deal of effort is put into good training data. The training data I used
was generated using very specific parameters: depth 9, 5000 nodes, and selected opening
books. It is known that higher depth data results in worse networks. It is believed that
the reason is that data becomes too hard for the network to learn. Also datasets generated
with different books also affect the performance of the network. Generating new data is
a very slow process, so it is harder to experiment with, which means that not that much
research has been done in this area.
Filtering of the data (skipping checks, captures, etc.) also affects the performance dra-
matically, but it is a lot easier to work with since it can be done after the data has been
generated. New filtering conditions can be tried.

Alternative to PQR: Instead of the loss function used to train PQR, the triplet loss
function could be tried, where the anchor is the P position, the positive is the observed
position Q and the negative is the random position R. I don’t expect this to improve that
much, but it is worth trying.

Network architecture: The architecture of NNUE-like networks has gone through
multiple iterations since its inception. This work focused on the first and most basic iter-
ation of it. Maybe it is worth exploring more complex architectures with a fixed feature
set rather than a fixed architecture with a variable feature set. Almost certainly try lower
values of L2, which may bring better results.

Feature sets: There are many aspects of the game that could be tried as features. A
good place to start looking for new features are existing handcrafted evaluations. I had
many ideas for new feature sets, but I had to discard them because the thesis was already
too long.
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A Appendix

The experiments are all run on the same hardware: an Intel 14900K CPU (24 cores,
32 threads) for dataset generation, batching, and evaluation, and a single NVIDIA RTX
4090 24GB GPU for training.

Runtime may be affected by other processes running on the machine. They are listed
here for reference.

Tournaments are held with 100 milliseconds per move, and the opening book used is
UHO_Lichess_4852_v1.epd. Each network plays at least 10000 games. Ratings are com-
puted using Ordo, relative to the average (rating=0 is the average) or to the best network
(rating=0 is the best network), depending on the experiment.

A.1 Baseline

Table 8. Network architecture sweep results (L1 × L2)

Feature set
Train hyperparams Network Val. loss

min
Rating

elo (avg=0)
Puzzles
move acc.

Runtime
hh:mm:ssBatch LR Gamma L1 L2

All 16384 5e-04 0.99 256 32 0.00351 86.3 ± 5.1 0.9047 1:53:59
All 16384 5e-04 0.99 256 64 0.00342 21.4 ± 4.9 0.8976 1:54:56
All 16384 5e-04 0.99 256 128 0.00330 -46.2 ± 5.5 0.8885 1:52:29
All 16384 5e-04 0.99 256 256 0.00319 -68.1 ± 6.1 0.8826 2:29:26
All 16384 5e-04 0.99 512 32 0.00309 105.8 ± 4.9 0.9027 1:54:28
All 16384 5e-04 0.99 512 64 0.00300 58.3 ± 5.0 0.8975 1:53:44
All 16384 5e-04 0.99 512 128 0.00290 13.2 ± 5.7 0.8880 1:51:06
All 16384 5e-04 0.99 512 256 0.00279 -73.6 ± 5.2 0.8790 1:51:17
All 16384 5e-04 0.99 1024 32 0.00268 114.1 ± 5.8 0.9032 2:15:18
All 16384 5e-04 0.99 1024 64 0.00265 50.5 ± 5.8 0.8955 2:03:41
All 16384 5e-04 0.99 1024 128 0.00257 -19.1 ± 6.2 0.8852 2:06:39
All 16384 5e-04 0.99 1024 256 0.00246 -109.4 ± 6.4 0.8725 2:32:47
All 16384 5e-04 0.99 2048 32 0.00241 104.0 ± 6.0 0.8968 3:11:56
All 16384 5e-04 0.99 2048 64 0.00238 30.0 ± 5.1 0.8876 3:12:46
All 16384 5e-04 0.99 2048 128 0.00234 -80.6 ± 5.6 0.8779 3:29:07
All 16384 5e-04 0.99 2048 256 0.00221 -186.6 ± 6.3 0.8678 3:27:47

Ratings are relative to the average (rating=0)
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Figure 19. Network architecture sweep validation loss over epochs (baseline)
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A.2 Axis encoding

A.2.1 Examples

(a) # White (b) # White (c) # White

(d)  Black (e)  Black (f)  Black

Figure 20. Weights of different neurons in the L1 layer that are connected to features in
All with different roles. The intensity represents the weight value, and the color represents
the sign. The number is the feature index, specifically VH instead of HV (both are All),
because it was prior to the first experiment. Refer to section 6.2.

The following online tool was used to generate the images. It allows to visualize the
weights that connect each neuron to the input.

https://mlomb.github.io/cs-master-thesis

Use the horizontal arrows (←→) to change between neurons and the vertical arrows
(↑↓) to change between epochs.
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A.2.2 Preliminar runs

Table 9. Axis feature sets preliminar runs

Feature set Run
Val. loss Runtime Rating @ 192 Rating @ 256

min hh:mm:ss TC=100ms/m TC=100ms/m

D1 + D2

1 0.006707 1:44:25 2.1 ± 4.3 13.5 ± 4.6
2 0.006716 1:45:46 -3.9 ± 5.1 -0.5 ± 5.0
3 0.006729 1:47:58 -4.7 ± 4.8 -1.6 ± 5.3
4 0.006721 1:51:24 -0.9 ± 5.3 -4.0 ± 5.0

H + V

1 0.005810 1:42:35 -8.6 ± 5.2 9.5 ± 5.5
2 0.005827 1:42:29 -2.6 ± 5.4 -6.5 ± 5.1
3 0.005816 1:42:59 4.8 ± 4.8 2.4 ± 5.4
4 0.005825 1:43:13 -6.3 ± 4.9 7.4 ± 5.2

H + V + D1 + D2

1 0.003885 2:26:05 -14.3 ± 4.9 -18.1 ± 4.3
2 0.003907 2:27:30 7.2 ± 5.0 15.4 ± 4.7
3 0.003905 2:27:35 0.1 ± 5.3 5.2 ± 4.4
4 0.003906 2:45:19 5.7 ± 5.0 -1.2 ± 4.5

All

1 0.003121 1:30:34 -2.9 ± 4.7 4.6 ± 4.4
2 0.003129 1:30:13 -4.2 ± 5.0 10.1 ± 5.4
3 0.003134 1:30:14 -10.0 ± 5.2 10.4 ± 5.1
4 0.003147 1:30:18 -9.6 ± 5.0 1.6 ± 4.8

All + D1 + D2

1 0.003093 2:06:54 -5.0 ± 4.4 1.7 ± 4.5
2 0.003087 2:12:30 8.6 ± 4.3 12.0 ± 4.7
3 0.003087 2:26:29 -3.1 ± 4.9 7.9 ± 3.9
4 0.003095 2:38:25 -6.1 ± 4.5 -16.0 ± 4.4

All + H + V

1 0.003086 2:05:02 1.0 ± 4.8 9.0 ± 6.0
2 0.003082 2:06:16 12.9 ± 4.8 7.1 ± 5.5
3 0.003079 2:04:53 -14.6 ± 5.1 2.3 ± 5.5
4 0.003085 2:07:18 -10.1 ± 4.9 -7.6 ± 4.4

All + H + V + D1 + D2

1 0.003071 2:49:23 -18.7 ± 4.9 4.3 ± 4.6
2 0.003052 2:42:18 -6.6 ± 4.6 -0.6 ± 4.8
3 0.003067 2:44:26 6.5 ± 4.8 9.5 ± 4.6
4 0.003050 2:44:34 -2.9 ± 5.4 8.5 ± 4.6

Batch size: 16384, LR: 5e-04, Gamma: 0.99, L1: 512, L2: 32
Each tournament rating is relative to its average (rating=0)
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A.2.3 Final results

Table 10. Axis feature sets final results

Feature set Run Epoch
Val. loss Rating

min TC=100ms/m

All 3 256 0.003134 0.0 ± 0.0
All + D1 + D2 2 256 0.003087 -26.1 ± 3.8
All + H + V 2 192 0.003082 -27.1 ± 4.1

All + H + V + D1 + D2 3 256 0.003067 -58.7 ± 3.7
H + V + D1 + D2 2 256 0.003907 -183.5 ± 4.1

H + V 1 256 0.005810 -384.3 ± 5.1
D1 + D2 1 256 0.006707 -444.1 ± 5.1

Batch size: 16384, LR: 5e-04, Gamma: 0.99, L1: 512, L2: 32
Tournament rating is relative to All (rating=0)
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A.3 Pairwise runs

A.3.1 Preliminar runs

Table 11. Pairwise feature sets preliminar runs

Feature set Run
Val. loss Runtime Rating @ 192 Rating @ 256

min hh:mm:ss TC=100ms/m TC=100ms/m

All + PV

1 0.002954 1:56:52 -2.9 ± 4.5 3.8 ± 4.0
2 0.002969 1:56:24 1.7 ± 4.7 3.3 ± 4.7
3 0.002953 1:56:12 -8.7 ± 4.9 -1.4 ± 4.4
4 0.002946 1:56:33 -8.8 ± 4.7 13.0 ± 4.7

All + PV + PH

1 0.002860 3:08:28 -17.9 ± 5.4 -5.4 ± 4.9
2 0.002865 4:10:56 1.7 ± 5.6 7.8 ± 5.5
3 0.002873 3:41:16 -5.3 ± 5.0 6.2 ± 5.1
4 0.002868 3:41:38 0.8 ± 5.3 12.0 ± 4.9

All + PH

1 0.003022 1:57:13 2.4 ± 4.4 6.7 ± 4.6
2 0.003023 2:31:41 -5.5 ± 4.6 1.8 ± 4.4
3 0.003053 2:42:28 -21.7 ± 4.7 0.8 ± 4.2
4 0.003033 2:44:46 7.5 ± 4.5 8.0 ± 4.5

Batch size: 16384, LR: 5e-04, Gamma: 0.99, L1: 512, L2: 32
Each tournament rating is relative to its average (rating=0)

A.3.2 Final results

Table 12. Pairwise feature sets final results

Feature set Run Epoch
Val. loss Rating

min TC=100ms/m

All + PV 4 256 0.002946 -8.4 ± 5.0
All + PV + PH 4 256 0.002868 -37.6 ± 4.9

All + PH 4 256 0.003033 -38.2 ± 4.8

Batch size: 16384, LR: 5e-04, Gamma: 0.99, L1: 512, L2: 32
Tournament rating is relative to All (rating=0)
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A.4 Mobility runs

A.4.1 Preliminar runs

Table 13. Mobility feature sets preliminar runs

Feature set Run
Val. loss Runtime Rating @ 192 Rating @ 256

min hh:mm:ss TC=100ms/m TC=100ms/m

All + MB

1 0.002809 2:46:15 0.1 ± 5.7 -7.5 ± 5.9
2 0.002824 2:51:49 -6.1 ± 6.1 12.1 ± 6.5
3 0.002812 2:49:58 -2.4 ± 5.2 11.4 ± 5.2
4 0.002828 2:53:24 -7.5 ± 6.0 0.0 ± 5.7

All + MC

1 0.003045 2:23:00 15.5 ± 5.2 -30.5 ± 5.3
2 0.003060 2:22:55 -41.5 ± 5.5 2.6 ± 5.3
3 0.003040 2:38:55 0.7 ± 5.4 12.6 ± 4.3
4 0.003032 2:21:59 19.0 ± 5.6 21.5 ± 4.9

Batch size: 16384, LR: 5e-04, Gamma: 0.99, L1: 512, L2: 32
Each tournament rating is relative to its average (rating=0)

A.4.2 Final results

Table 14. Mobility feature sets final results

Feature set Run Epoch
Val. loss Rating

min TC=100ms/m

All + MB 2 256 0.002824 -260.9 ± 5.4
All + MC 4 256 0.003032 -280.9 ± 5.6

Batch size: 16384, LR: 5e-04, Gamma: 0.99, L1: 512, L2: 32
Tournament rating is relative to All (rating=0)
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A.5 Feature set statistics

Table 15. Feature set statistics

Depiction Feature block Number of features
Average features...

active
per position

added
per move

removed
per move

All 768 14.68 0.98 0.60

H 96 14.68 0.60 0.43

V 96 14.68 0.61 0.43

D1 180 14.68 0.77 0.52

D2 180 14.68 0.77 0.52

PH 1152 8.23 0.92 0.57

PV 1152 8.30 0.83 0.53

MB MB 768 48.93 5.68 4.35
MC MC 206 12.00 2.34 1.48

To obtain the previous data, 100 million positions were visited. The average number of
added and removed features per move is calculated iterating over every legal move of each
position and counting the features that change after making the move.

59



A.6 emitPlainEntry code

void emitPlainEntry(std::string& buffer, const TrainingDataEntry& plain)

{

buffer += plain.pos.fen();

buffer += ’,’;

buffer += std::to_string(plain.score);

buffer += ’,’;

buffer += chess::uci::moveToUci(plain.pos, plain.move);

buffer += ’\n’;

}
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